Cerebras Inference API - Ultra-Fast AI Inference API Service
š Service Overview
Service Name: Cerebras Inference API
Provider: Cerebras Systems
API Endpoint: https://api.cerebras.ai/v1
Service Type: Free tier (1 million tokens daily)
Registration Requirements: Email only, no credit card required
ā Service Description
Cerebras Inference API is an ultra-high-performance AI inference service provided by Cerebras Systems, built on revolutionary Wafer-Scale Engine (WSE) technology, offering 20x faster inference speed than traditional GPUs.
Key Features
- š Ultra-Fast Inference: Llama 4 Scout achieves 2,600+ tokens/s, 20x faster than GPUs
- š Free Tier: 1 million tokens free daily
- š OpenAI Compatible: Fully compatible with OpenAI API format for seamless migration
- š¤ Mainstream Models: Supports Llama 3.1/4, Qwen 3, and other open-source large models
š Available Models
Free/Trial Model List
| Model Name | Context Length | Output Length | Features | Use Cases |
|---|---|---|---|---|
| llama-4-scout | 8K | 2K | š Ultra-fast (2,600+ tokens/s) | Real-time apps, chatbots |
| llama-3.1-70b | 128K | 4K | High performance, large context | Long document processing, complex tasks |
| llama-3.1-8b | 128K | 4K | Fast, lightweight | Quick response, edge deployment |
| qwen-3-32b | 128K | 4K | Chinese optimized | Chinese applications |
Detailed Model Information
Llama 4 Scout
- Context Window: 8K tokens
- Primary Use: Real-time conversation, quick Q&A
- Advantage: Industry-leading inference speed at 2,600+ tokens/s
Llama 3.1 70B
- Context Window: 128K tokens
- Primary Use: Complex tasks, long document processing
- Advantage: Balances high performance with ultra-long context
Llama 3.1 8B
- Context Window: 128K tokens
- Primary Use: Quick response scenarios
- Advantage: Lightweight and fast, more cost-effective
Qwen 3-32B
- Context Window: 128K tokens
- Primary Use: Chinese dialogue and tasks
- Advantage: Excellent Chinese language performance
š¢ Quotas and Limits
Free Tier Limits
| Limit Item | Quota | Notes |
|---|---|---|
| Daily Tokens | 1M tokens/day | Most mainstream models, daily reset |
| Rate Limits | Varies by model | Retry mechanism recommended |
| Max Context Length | Up to 128K tokens | Depends on specific model |
| Max Output Length | Up to 4K tokens | Depends on specific model |
| Concurrent Requests | Within reason | See official docs for specifics |
| Credit Card Required | ā | Completely free, no card needed |
Note: Specific limits may vary by model. Please refer to the official Rate Limits documentation for the latest information.
ā ļø Important Limits
- Daily Quota: 1 million tokens/day, resets at UTC 00:00
- Model Availability: Model list may be updated anytime, refer to official documentation
- Commercial Use: Free tier for development/testing only, contact sales for production
Quota Reset Time
- Daily Quota: UTC 00:00 (Beijing time 08:00)
- Usage Monitoring: Check remaining quota via API response headers or console
š° Pricing
Free/Trial
- Free Quota: 1 million tokens daily
- How to Get: Simply register an account
- Duration: Continuously free (policy subject to change)
Paid Pricing
For paid pricing, please contact Cerebras sales team: [email protected]
š Getting Started
Prerequisites
1. Register Account
Please follow the Cerebras Registration Guide to complete account registration.
2. Get API Key
Log in to Developer Platform
Visit Cerebras Cloud and log in to your account.
Create API Key
- Find “API Keys” in the left menu
- Click “Create API Key”
- Name your key (optional)
- Click “Create”
Save API Key
- Important: Copy the displayed API key
- API key is shown only once, save it immediately to a secure location
- Recommended to store key in environment variables
š» Code Examples
Python Example
Method 1: Using OpenAI Client (Compatible Mode)
Install Dependencies:
pip install openaiBasic Usage:
from openai import OpenAI
# Initialize client (using Cerebras API)
client = OpenAI(
base_url="https://api.cerebras.ai/v1",
api_key="YOUR_CEREBRAS_API_KEY" # Replace with your API key
)
# Send request
response = client.chat.completions.create(
model="llama-4-scout",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain what a Wafer-Scale Engine is"}
],
max_tokens=1000,
temperature=0.7
)
# Print response
print(response.choices[0].message.content)
# Check token usage
print(f"\nTokens Used: {response.usage.total_tokens}")
print(f"Prompt Tokens: {response.usage.prompt_tokens}")
print(f"Completion Tokens: {response.usage.completion_tokens}")Method 2: Using Official SDK (Recommended)
Install Dependencies:
pip install cerebras_cloud_sdkBasic Usage:
from cerebras.cloud.sdk import Cerebras
import os
# Initialize client
client = Cerebras(
api_key=os.environ.get("CEREBRAS_API_KEY")
)
# Send request
response = client.chat.completions.create(
model="llama-3.3-70b",
messages=[
{"role": "user", "content": "Explain what a Wafer-Scale Engine is"}
],
)
# Print response
print(response.choices[0].message.content)Streaming Output Example:
# Streaming output (real-time display)
stream = client.chat.completions.create(
model="llama-4-scout",
messages=[
{"role": "user", "content": "Write a poem about artificial intelligence"}
],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)Using Environment Variables:
import os
from openai import OpenAI
# Read API key from environment variable
client = OpenAI(
base_url="https://api.cerebras.ai/v1",
api_key=os.getenv("CEREBRAS_API_KEY")
)
response = client.chat.completions.create(
model="llama-3.1-70b",
messages=[
{"role": "user", "content": "What is machine learning?"}
]
)
print(response.choices[0].message.content)cURL Example
Basic Request:
curl https://api.cerebras.ai/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_CEREBRAS_API_KEY" \
-d '{
"model": "llama-4-scout",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello, tell me about Cerebras"
}
],
"max_tokens": 1000,
"temperature": 0.7
}'Streaming Output:
curl https://api.cerebras.ai/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_CEREBRAS_API_KEY" \
-d '{
"model": "llama-4-scout",
"messages": [
{"role": "user", "content": "Hello"}
],
"stream": true
}'Node.js Example
Install Dependencies:
npm install openaiBasic Usage:
import OpenAI from 'openai';
const client = new OpenAI({
baseURL: 'https://api.cerebras.ai/v1',
apiKey: process.env.CEREBRAS_API_KEY,
});
async function main() {
const completion = await client.chat.completions.create({
model: 'llama-4-scout',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is artificial intelligence?' }
],
max_tokens: 1000,
temperature: 0.7,
});
console.log(completion.choices[0].message.content);
console.log(`\nTokens Used: ${completion.usage.total_tokens}`);
}
main();Streaming Output:
async function streamExample() {
const stream = await client.chat.completions.create({
model: 'llama-4-scout',
messages: [
{ role: 'user', content: 'Write a short story' }
],
stream: true,
});
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content || '';
process.stdout.write(content);
}
}
streamExample();š Core Advantages
Technical Advantages
Ultra-Fast Inference:
- Llama 4 Scout: 2,600+ tokens/s
- 20x faster than GPUs
- Millisecond-level response latency
Wafer-Scale Engine (WSE):
- 900,000 AI cores
- 40 Pbits/s on-chip bandwidth
- 44 GB high-speed SRAM
OpenAI Compatible:
- Seamless migration of existing code
- Supports streaming output
- Standard API format
Comparison with Other APIs
| Feature | Cerebras | Groq | DeepSeek | Google AI Studio |
|---|---|---|---|---|
| Free Quota | 1M tokens/day | ~14,400 req/day | „5 trial | Free usage |
| Inference Speed | š 2,600+ tokens/s | 800+ tokens/s | Fast | Fast |
| OpenAI Compatible | ā | ā | ā | ā |
| Context Length | 128K | 128K | 128K | 2M |
| Credit Card Required | ā | ā | ā | ā |
š” Practical Recommendations
ā Best Practices
Choose the Right Model:
# Real-time apps - ultimate speed model = "llama-4-scout" # Complex tasks - balanced performance and quality model = "llama-3.1-70b" # Chinese apps - Chinese optimized model = "qwen-3-32b"Use Streaming to Enhance UX:
# Streaming lets users see content in real-time stream = client.chat.completions.create( model="llama-4-scout", messages=messages, stream=True ) for chunk in stream: if chunk.choices[0].delta.content: print(chunk.choices[0].delta.content, end="", flush=True)Implement Request Caching:
import hashlib import json cache = {} def cached_request(model, messages): # Generate cache key key = hashlib.md5( json.dumps({"model": model, "messages": messages}).encode() ).hexdigest() # Check cache if key in cache: return cache[key] # Call API response = client.chat.completions.create( model=model, messages=messages ) # Store in cache cache[key] = response return response
šÆ Best Practices
Maximize Free Quota:
- 1 million tokens daily is sufficient for development and testing
- Monitor daily usage to avoid exceeding quota
- Use free tier for dev and test environments
Optimize Token Usage:
- Streamline system prompts
- Control conversation history length
- Set max_tokens appropriately
Monitor Quota Usage:
# You can check usage in the Cerebras Cloud console
# Visit: https://cloud.cerebras.aiError Handling:
import time
from openai import OpenAI, RateLimitError, APIError
client = OpenAI(
base_url="https://api.cerebras.ai/v1",
api_key="YOUR_CEREBRAS_API_KEY"
)
def call_api_with_retry(messages, max_retries=3):
"""API call with retry mechanism"""
for attempt in range(max_retries):
try:
response = client.chat.completions.create(
model="llama-4-scout",
messages=messages
)
return response
except RateLimitError:
print(f"Rate limit reached, retrying... ({attempt + 1}/{max_retries})")
time.sleep(2 ** attempt) # Exponential backoff
except APIError as e:
print(f"API error: {e}")
if attempt == max_retries - 1:
raise
time.sleep(1)
return Noneā ļø Important Notes
- Quota Management: 1 million tokens daily, resets at UTC 00:00, plan usage accordingly
- Rate Limits: Despite being very fast, rate limits exist, implement retry mechanism
- Model Selection: Choose appropriate model based on use case, balance speed and quality
šÆ Real-World Use Cases
Case 1: Real-Time Chatbot
Scenario: Building a real-time responsive chatbot
from openai import OpenAI
client = OpenAI(
base_url="https://api.cerebras.ai/v1",
api_key="YOUR_CEREBRAS_API_KEY"
)
def chatbot():
"""Real-time chatbot"""
messages = [
{"role": "system", "content": "You are a friendly AI assistant"}
]
print("Chatbot started! Type 'quit' to exit.\n")
while True:
user_input = input("You: ")
if user_input.lower() == 'quit':
break
messages.append({"role": "user", "content": user_input})
# Use streaming for real-time response
print("AI: ", end="", flush=True)
stream = client.chat.completions.create(
model="llama-4-scout",
messages=messages,
stream=True
)
assistant_response = ""
for chunk in stream:
content = chunk.choices[0].delta.content or ""
print(content, end="", flush=True)
assistant_response += content
print("\n")
messages.append({"role": "assistant", "content": assistant_response})
# Run chatbot
chatbot()Case 2: Batch Text Processing
Scenario: Process multiple text tasks in batch
import asyncio
from openai import AsyncOpenAI
client = AsyncOpenAI(
base_url="https://api.cerebras.ai/v1",
api_key="YOUR_CEREBRAS_API_KEY"
)
async def process_text(text):
"""Process single text"""
response = await client.chat.completions.create(
model="llama-4-scout",
messages=[
{"role": "system", "content": "You are a text summarization expert"},
{"role": "user", "content": f"Please summarize the following text:\n\n{text}"}
]
)
return response.choices[0].message.content
async def batch_process(texts):
"""Batch process texts"""
tasks = [process_text(text) for text in texts]
results = await asyncio.gather(*tasks)
return results
# Usage example
texts = [
"This is the first text...",
"This is the second text...",
"This is the third text..."
]
results = asyncio.run(batch_process(texts))
for i, summary in enumerate(results, 1):
print(f"Summary {i}: {summary}\n")Case 3: Code Generation Assistant
Scenario: Use AI to assist with code generation
from openai import OpenAI
client = OpenAI(
base_url="https://api.cerebras.ai/v1",
api_key="YOUR_CEREBRAS_API_KEY"
)
def code_assistant(task_description):
"""Code generation assistant"""
response = client.chat.completions.create(
model="llama-3.1-70b",
messages=[
{
"role": "system",
"content": "You are a professional programming assistant skilled at generating high-quality code"
},
{
"role": "user",
"content": f"Please help me write code: {task_description}"
}
],
temperature=0.3 # Lower temperature for better code quality
)
return response.choices[0].message.content
# Usage example
task = "Implement binary tree preorder traversal in Python"
code = code_assistant(task)
print("Generated code:")
print(code)š§ Common Questions
Q: How do I check remaining quota?
A: Log in to Cerebras Cloud console to view API usage and remaining quota. It’s recommended to check usage regularly during development.
Q: What happens if I exceed daily quota?
A: API will return 429 error, need to wait until UTC 00:00 for quota reset, or upgrade to paid plan.
Q: Which programming languages are supported?
A: Since it’s OpenAI API compatible, all languages supporting OpenAI SDK can be used, including Python, Node.js, Go, Java, etc.
Q: Can I use it in production?
A: Free tier is mainly for development/testing, contact Cerebras sales team for enterprise solutions for production.
Q: Why is it so fast?
A: Cerebras uses Wafer-Scale Engine (WSE) with 900,000 cores and 40 Pbits/s bandwidth in a single chip, eliminating traditional GPU memory bottlenecks.
š Related Resources
- API Endpoint:
https://api.cerebras.ai/v1 - Developer Platform: https://cloud.cerebras.ai
- API Documentation: https://inference-docs.cerebras.ai
- Provider Homepage: Cerebras Systems
- SDK Documentation: OpenAI Python SDK
- GitHub: https://github.com/Cerebras
š Update Log
- January 2024: Cerebras Inference API publicly launched with 1 million free tokens daily
- 2024: Added support for Llama 3 series models
- 2025: Added Llama 4 Scout, Qwen 3-32B, and other models
Service Provider: Cerebras Systems